However, I don't want to ignore this development -- it could make the 2014 an interesting year! GF have dubbed the new process 14XM, for "eXtreme Mobility," since from the start it has been targeted on mobile applications -- after all, mobile products are the volume driver in the chip business these days.
And what's the biggest complaint from mobile users? Having to charge them so often, as battery technology has not improved at anything like a rate comparable to chip performance.
So while GloFo got started in high-k metal-gate (HKMG) making 32nm parts for AMD, they have seen the obvious and are generating low-power processes, beginning with the 28-SLP, moving to the 20-LPM, and now the 14XM.
The 20-LPM process claims a 40% reduction in power from the 28nm generation, and the 14XM claims 40%-60% increased battery life over 20-LPM. The 20nm generation is scheduled for next year, and as noted earlier 14XM is due out in 2014, a year later, breaking the two-year cadence that we've all got used to. Apparently 20nm wafers are running the full process in the Malta, NY fab right now.
They're accelerating the process launch by using the 20-LPM middle/back end-of-line metal stack with the finFET front end. In the 20nm process the 1x metal pitch is 64nm and the single-patterned metal is 80nm -- coincidentally, the latter is the same as Intel's tightest pitch in their 22nm product.
20nm metal pitches shown at the 2012 Common Platform Tech Forum (CPFT) |
The use of the 3D finFET structure enables a higher performance/unit area, or lower power/unit area at a given performance at the transistor level. The graph below shows some estimates made by their R&D group.
SoC Performance vs. power -- lower power at constant frequency [1] |
Functional scaling itself will be limited to some extent by the 20-LPM metal density, but presumably some die shrink can be achieved by using more metal layers, and also the increased current density will allow some compaction since higher-current transistors will be smaller. Keeping single patterning will mitigate the cost, compared with double patterning for denser layers.
The process will also continue from the 20-LPM process in that it will use gate-last (replacement metal gate) technology on a bulk substrate. The R&D group in New York has published a couple of papers [2, 3] referencing a 40nm fin pitch, but 14XM will have a fin pitch of 48nm to leave some slack in the lithographic challenge, and minimize quantization errors. Together with the metal pitches of 64 and 80nm, it implies a 16nm grid as a basis for layout. The use of 64nm Metal 1 presumably also means that the contacted gate (CG) pitch will be 64nm.
The Intel 22nm process has a fin pitch of 60nm, and a CG pitch of 90nm, so it's not unreasonable to assume that their 14nm process will have similar numbers.
We will see whether the fin will be tapered similar to Intel's; these images (below) from CPTF seem to show a vertical fin atop the STI profile, but then, they are only schematics. Using a single (STI) etch to shape the fins (as I think Intel does) should certainly be less complex than trying to get vertical-walled fins on top of the STI trench sidewall.
The economic challenge in going to 14nm is almost as huge as the technical challenge, and keeping the cost/power/performance (CPP) metric in check as process complexity spirals upwards has caused inevitable concern. In particular, the cost benefits of shrinking die size tends to go away as the lithography demands double, triple, and even quadruple patterning.
Jen-Hsun Huang of Nvidia has publicized his concern about increasing wafer costs at last year's IPTC (International Trade Partner Conference) meeting -- the plot below shows the increasing gap in wafer cost between successive nodes:
So if GLOBALFOUNDRIES, or any other foundry, wants to keep the customers coming, they have to mitigate the cost increase going to the next node. Taking a hybrid approach such as the 14XM process should be an attractive option for their existing and future customers.
It's interesting to note that TSMC has changed tack slightly and are now saying that they will be using finFETs at 16nm, not 14nm. They are also claiming that their 20nm metal pitch is leading-edge at 64nm, although that's the same as GF's. It's tempting to wonder if TSMC will also use a hybrid approach and transfer their 20nm back-end to the 16nm node, since the arguments are the same. Chenming Hu thinks so, anyway. TSMC are predicting 16nm risk production in 2014.
We'll see if GF can match Intel's timing -- Mark Bohr sounded very confident at the Intel Developer Forum, when he said their 14nm product would be ready for the tail end of next year. Will we have GF-produced finFETs in early 2014? And will their finFETs be better than Intel's?
My thanks to Subi Kengeri for clearing up some of the technical details.
[1] A. Keshavarzi et al., Architecting Advanced Technologies for 14nm and Beyond with 3D FinFET Transistors for the Future SoC Applications, Proc. IEDM 2012, pp. 67-70.
[2] T. Yamashita et al., Sub-25nm FinFET with Advanced Fin Formation and Short Channel Effect Engineering, Proc. VLSI 2011, pp. 14-15.
[3] C.-H. Lin et al., Channel Doping Impact on FinFETs for 22nm and Beyond, Proc. VLSI 2012, pp. 15-16.
That is a sweet roadmap GF; the gatestack/transistor/substrate changes every node! I am confident they will be on time...
ReplyDeleteGF Leading Performance Tech
Tech Substrate GOX
45 SOI SiO2
32 SOI Gate first HKMG
28 Bulk Gate first HKMG
20 Bulk Replacement Gate HKMG
14 Bulk-Fin Replacement Gate HKMG
VIRUS REMOVAL
ReplyDeleteIs Your Computer Sluggish or Plagued With a Virus? – If So you Need Online Tech Repairs
As a leader in online computer repair, Online Tech Repairs Inc has the experience to deliver professional system optimization and virus removal.Headquartered in Great Neck, New York our certified technicians have been providing online computer repair and virus removal for customers around the world since 2004.
Our three step system is easy to use; and provides you a safe, unobtrusive, and cost effective alternative to your computer service needs. By using state-of-the-art technology our computer experts can diagnose, and repair your computer system through the internet, no matter where you are.
Our technician will guide you through the installation of Online Tech Repair Inc secure software. This software allows your dedicated computer expert to see and operate your computer just as if he was in the room with you. That means you don't have to unplug everything and bring it to our shop, or have a stranger tramping through your home.
From our remote location the Online Tech Repairs.com expert can handle any computer issue you want addressed, like:
• - System Optimization
• - How it works Software Installations or Upgrades
• - How it works Virus Removal
• - How it works Home Network Set-ups
Just to name a few.
If you are unsure of what the problem may be, that is okay. We can run a complete diagnostic on your system and fix the problems we encounter. When we are done our software is removed; leaving you with a safe, secure and properly functioning system. The whole process usually takes less than an hour. You probably couldn't even get your computer to your local repair shop that fast!
Call us now for a FREE COMPUTER DIAGONISTIC using DISCOUNT CODE (otr214427@gmail.com) on +1-914-613-3786 or chat with us on www.onlinetechrepairs.com.
1 Problem: HP Printer not connecting to my laptop.
ReplyDeleteI had an issue while connecting my 2 year old HP printer to my brother's laptop that I had borrowed for starting my own business. I used a quick google search to fix the problem but that did not help me.
I then decided to get professional help to solve my problem. After having received many quotations from various companies, i decided to go ahead with Online Tech Repair (www.onlinetechrepairs.com).
Reasons I chose them over the others:
1) They were extremely friendly and patient with me during my initial discussions and responded promptly to my request.
2) Their prices were extremely reasonable.
3) They were ready and willing to walk me through the entire process step by step and were on call with me till i got it fixed.
How did they do it
1) They first asked me to state my problem clearly and asked me a few questions. This was done to detect any physical connectivity issues with the printer.
2) After having answered this, they confirmed that the printer and the laptop were functioning correctly.
3) They then, asked me if they could access my laptop remotely to troubleshoot the problem and fix it. I agreed.
4) One of the tech support executives accessed my laptop and started troubleshooting.
5) I sat back and watched as the tech support executive was navigating my laptop to spot the issue. The issue was fixed.
6) I was told that it was due to an older version of the driver that had been installed.
My Experience
I loved the entire friendly conversation that took place with them. They understood my needs clearly and acted upon the solution immediately. Being a technical noob, i sometimes find it difficult to communicate with tech support teams. It was a very different experience with the guys at Online Tech Repairs. You can check out their website www.onlinetechrepairs.com or call them on 1-914-613-3786.
Would definitely recommend this service to anyone who needs help fixing their computers.
Thanks a ton guys. Great Job....!!