There are of course other products that we are anticipating such as the latest SDRAM, STT or resistive RAM, and anything with TSVs, but they are lower-key and will not get the same attention from the majority of our customers.
So now the first shoe has dropped (must check where that metaphor came from!), and we have a TSMC-fabbed 20-nm part in-house. It is in the lab at the moment, and we are waiting for the analysis results.
It will be interesting to see what changes TSMC has made from the 28-nm process; in general, I expect mostly a shrink of the latter process, with no change to the materials of the high-k stack, though maybe to the sequence. At 28-nm the high- k was put down first, before the dummy poly gate, and it makes sense to move that deposition to after poly gate removal. That way, the high-k layer does not have to suffer the poly formation and source-drain engineering process steps, saving it from quite a bit of thermal processing.
Below is an illustration of a NMOS transistor from a Qualcomm Snapdragon 800, fabricated in the TSMC 28HPM process. The slight indent at the bottom of the metal stack (indicated by the arrow), above the high-k layers, indicates that the high-k was formed before the polysilicon deposition and the subsequent source/drain engineering.
Fig. 1 NMOS Transistor in Qualcomm Snapdragon 800 |
Fig. 2 Intel 32-nm NMOS Transistor |
Fig. 3 PMOS Transistor in Qualcomm Snapdragon 800 |
When
it comes to PMOS, I also expect a high-k last version of the 28-nm gate
structure, with the latest version of e-SiGe source/drains, likely with
a sigma-cavity etch to the (111) planes. We already have raised
source/drains, and the Ge content is ~50%, so not much opportunity for
change there.
Back in May, Applied Materials announced a cobalt CVD system aimed at improving copper fill and electro-migration performance. I wouldn’t have expected to see this in use yet, but at Semicon I heard that over 90 of these systems have already been shipped, so there is at least a possibility that we’ll see cobalt in our 20-nm metallization.
All pure speculation, but as a blogger and analyst, I’m paid to speculate!
As for "the first shoe drop", it's a variant on "waiting for the other shoe to drop"; apparently it's a reference to cheap apartment housing where tenants would hear their neighbours above taking off and dropping their first shoes on to the floor; and then wait for the second shoes to drop.
No comments:
Post a Comment